STUDY ON NEW ICE SLURRY GENERATOR USING NaCl AQUEOUS SOLUTION AT LOW CONCENTRATION

Author:

FUMOTO KOJI1,KAWANAMI TSUYOSHI2,INAMURA TAKAO1

Affiliation:

1. Department of Intelligent Machines and System Engineering, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 0368561, Japan

2. Department of Mechanical Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 6578501, Japan

Abstract

A cold thermal energy storage system has been developed for HVAC. There are many ice-based cooling systems operating around the world. Ice slurry, which is a mixture of fine ice crystals and liquid water, is utilized in ice storage systems owing to its good flowability and large latent heat of fusion. For slurry ice production techniques, there are presently a number of commercially available ice slurry generators (e.g., Supercooled slurry ice generator, Scraper type generator, and Vacuum type generator, etc.). In the present study, a new method was developed to generate ice slurry without the deposition of an ice layer on a cooled surface. The basic components of the experimental apparatus is a cooling brine circulating loop, a high pressure pump, a valve, an aqueous solution flow loop containing the test section, which is made of transparent acrylic, and the associated instrumentation. This new method is based on freezing-point depression of the aqueous solution, which is maintained under high-pressure conditions. To control the timing for solidification and to generate ice slurry, we investigated the relationships among the pressure and temperature of the aqueous solution. The freezing phenomenon of the aqueous solution in the test section was observed in detail. As a result, we developed a new ice slurry generator based on the new method that controls the pressure and temperature of the aqueous solution. Experimental results showed that the characteristics of the ice slurry generation were closely related to the pressure and initial stage temperature of the test fluid. Finally, the optimum operation condition of the ice slurry generator based on visualization experiment was discussed.

Publisher

Springer Science and Business Media LLC

Subject

Fluid Flow and Transfer Processes,Renewable Energy, Sustainability and the Environment,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3