SUCTION PIPE DESIGN CRITERION FOR R-134a REFRIGERATORS TO SECURE OIL RETURN TO COMPRESSOR

Author:

GUO TIANDONG1,LEE WONJONG1,DO SANGCHUL1,JEONG JI HWAN1

Affiliation:

1. School of Mechanical Engineering, Pusan National University, Busan 609-735, Korea

Abstract

Polyol Ester oil–air two-phase counter current flow experiments were performed with small diameter tubes to measure gas velocities for the counter current flow limitation point and the flow reversal point. The test section was made of a Pyrex glass tube to allow visual observation. The geometry of the test section was designed to simulate various shapes of suction lines of refrigerators. The inner diameter of the test tube was 7 mm and the height was 1 m. The inclination of the test tubes varied from vertical to crank type with various horizontal lengths. An empirical oil return criterion was suggested based on the flow reversal points. This criterion was also verified using a refrigerator test apparatus and refrigerant.

Publisher

Springer Science and Business Media LLC

Subject

Fluid Flow and Transfer Processes,Renewable Energy, Sustainability and the Environment,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigation of two-phase flow distribution in the vertical annular distribution header of a variable refrigerant flow heat pump system;Applied Thermal Engineering;2024-12

2. CompactETA;Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining;2020-07-06

3. A study on the flow characteristics of refrigerant and oil mixture in compressor suction line;International Journal of Refrigeration;2014-12

4. Piston Optimization Design of Linear Compressor for Refrigerator;Applied Mechanics and Materials;2014-06

5. Dynamic response of a capacity-modulated linear compressor to supply voltage disturbances;International Journal of Refrigeration;2014-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3