NUMERICAL AND EXPERIMENTAL INVESTIGATION OF THE FLOW CHARACTERISTICS OF R134a FLOWING THROUGH ADIABATIC HELICAL CAPILLARY TUBES

Author:

CHINGULPITAK SUKKARIN12,KAEW-ON JATUPORN32,WONGWISES SOMCHAI2

Affiliation:

1. The Joint Graduate School of Energy and Environment, King Mongkut's University of Technology Thonburi, Bangmod, Bangkok 10140, Thailand

2. Fluid Mechanics, Thermal Engineering and Multiphase, Flow Research Lab. (FUTURE), Department of Mechanical Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangmod, Bangkok 10140, Thailand

3. Physics Department, Faculty of Science, Thaksin University, Papayom, Phattalung 93110, Thailand

Abstract

This paper presents numerical and experimental results of the flow characteristics of R134a flowing through adiabatic helical capillary tubes. The local pressure distribution along the length of the capillary tubes is measured at inlet pressures ranging from 10 to 14 bar, mass flow rates from 8 to 20 kg h-1, and degrees of subcooling from 0.5°C to 15°C. The theoretical model is based on conservation of mass, energy and the momentum of the fluids in the capillary tube. The model is divided into three regions: subcooled liquid region, metastable liquid region and equilibrium two-phase region and can be applied for various tube geometries, new alternative refrigerants and critical or noncritical flow conditions. The model is validated by comparing results from the present experimental data with that of the available literature. Based on the comparison results, the model used in the present study provides reasonable agreement with the experimental data.

Publisher

Springer Science and Business Media LLC

Subject

Fluid Flow and Transfer Processes,Renewable Energy, Sustainability and the Environment,Control and Systems Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3