Deep Borehole Heat Exchangers — A Conceptual and Comparative Review

Author:

Sapinska-Sliwa Aneta1,Rosen Marc A.2,Gonet Andrzej1,Sliwa Tomasz1

Affiliation:

1. AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland

2. University of Ontario Institute of Technology, 2000 Sincoe Street North, Oshawa, Ontario L1H 7K4, Canada

Abstract

Borehole heat exchangers (BHEs) are used for transforming a rock mass into an underground heat storage. Usually, their depth does not exceed 200[Formula: see text]m, but some extend to a depth of almost 3000[Formula: see text]m. Underground heat storages can operate as part of heating and cooling systems, often economically. In winter they extract heat from the rock mass for space heating, while in summer the cooled rock mass is used for air conditioning. The heat extracted from buildings via air conditioning is transferred into the rock mass, thereby regenerating its condition for winter time. Deep borehole exchangers also may operate only in the heating mode. Then, the rock resource conditions are regenerated via heat transfer through neighboring rocks. If a groundwater flow is present, the heat can also be removed and the source conditions regenerated through convection.Here, an overview of the use and operation of deep BHEs around the world is provided. Special emphasis is placed on the Carpathians, where numerous analyses of geothermal heat use have been performed since 1999. Examples of calculations for old oil and gas wells as well as negative exploration boreholes are given. Such analyses have been performed for boreholes in Poland and the Ukraine. However, little research has been published on this subject to date, for reasons described herein.

Publisher

Springer Science and Business Media LLC

Subject

Fluid Flow and Transfer Processes,Renewable Energy, Sustainability and the Environment,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3