Review on Cooling System Energy Consumption in Internet Data Centers

Author:

Amoabeng Kofi Owura1,Choi Jong Min2

Affiliation:

1. Graduate School of Mechanical Engineering, Hanbat National University, 125 Dongseodaero Yuseong-gu, Daejeon 305-719, Korea

2. Department of Mechanical Engineering, Hanbat National University, 125 Dongseodaero Yuseong-gu, Daejeon 305-719, Korea

Abstract

Due to the advancement of the telecommunication and information technology (IT) industry, internet data centers (IDCs) have become widespread in the public and private sectors. As such, energy demand in the center has also become increasingly prominent. Several technologies on energy management have been studied to determine the options available to minimize the energy required to operate the data center as well as reduce greenhouse gas emissions. The cooling system is required to remove the high heat dissipated by the IT electronic components especially the servers in order to ensure safe and reliable working condition. However, it utilizes more than one-third of the total energy consumption in the data center. In this study, the energy efficiency technologies that are usually applied to cooling systems in data centers were reviewed. The aim is to find out the strategies that will reduce the energy consumption of the cooling system since the cooling demand in data center is all year round. Prior to that, the performance metric tool that is mostly used in analyzing data center efficiency was discussed. The conventional cooling system technologies that are utilized in data centers were also provided. Lastly, innovative cooling technologies for future solutions in data centers were discussed.

Publisher

Springer Science and Business Media LLC

Subject

Fluid Flow and Transfer Processes,Renewable Energy, Sustainability and the Environment,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3