Thermochemistry of Elementary Reactions in Water–Gas Shift Reaction on Ni(111): An Ab Initio Study

Author:

Mishra Neeraj1,Sharma Menka2

Affiliation:

1. Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India

2. Department of Physics, Jamia Millia Islamia, Delhi 110025, India

Abstract

A comprehensive thermodynamic study of the water–gas shift (WGS) reaction was performed using density functional theory (DFT). Chemisorption involves the formation of new chemical bonds between adsorbed species and atoms of the substrate. Adsorbates dissociate on the metal surface because of weaker intermolecular bonds on the surface. The adsorption energies of 12 adsorbed species were calculated on Ni(111) surface. Moreover, 21 elementary reactions were considered for investigating the mechanism of water–gas shift (WGS) reaction on Ni(111). A detailed thermodynamic calculation of the WGS reaction is shown and discussed in this work. The vibrational frequencies were calculated for all the gaseous species, top surface layer atoms, and adsorbed configurations. Thermochemistry of the surface reactions was calculated using spin-paired DFT with RPBE functional for exchange and correlation. This report covers the adsorption energies, vibrational frequencies, and thermochemistry of chemical species such as H2, H2O, CO and CO2, involved in the WGS reaction, on the Ni(111) surface. Vibrational calculations were performed only on their favorable sites. Finally, the thermochemistry ([Formula: see text]E, [Formula: see text]H, [Formula: see text]S, [Formula: see text]G) of elementary reactions was calculated, and thermodynamically driven reaction mechanisms were determined for the water–gas shift reaction on Ni(111) surface. We found that thermodynamically predicted mechanisms are in good accord with the kinetic predictions and can be considered a good first approximation.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3