Integration of Machine Learning with Statistical Variation Analysis for Ferroelectric Transistor (FE-MOSFETs)

Author:

Singh Abhay Pratap1ORCID,Baghel R. K.1ORCID,Tirkey Sukeshni1ORCID

Affiliation:

1. ECE Department, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India

Abstract

This paper investigates a comparative analysis of technology computer-aided design (TCAD) versus machine learning (ML) technique for ferroelectric-based substrate metal oxide semiconductor field effect transistor (FE-MOSFET), which shows the low power energy storage device and ML algorithms reduce the time or overall process. The simulations carried out through TCAD require approximately 44–46 days, encompassing variations in input parameters like gate work function ([Formula: see text]), doping concentration ([Formula: see text]), channel doping ([Formula: see text]), gate-to-source voltage ([Formula: see text]), and drain-to-source voltage ([Formula: see text]). In order to lower the computing cost of numerical TCAD device simulations, a new ML-assisted technique is provided for studying the FE-MOSFET. To reduce the runtime of physics-based TCAD by about 10–12[Formula: see text]h for each iteration, a ML-based prediction alternative is created. The proposed combination of TCAD device simulation and ML algorithms is the future of the next generation of electronics.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3