Fine-Tuning of the Electronic and Optical Properties of Dodecabenzocoronene through Boron and Nitrogen Doping: A DFT Insight

Author:

Sarfaraz Sehrish1,Lakhani Ahmed2,Hussain Riaz3,Ayub Khurshid1

Affiliation:

1. Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus Abbottabad, KPK 22060, Pakistan

2. Department of Biomedical and Health Sciences, Calumet College of St. Joseph, 2400, New York Ave, Whiting, IN 46394, USA

3. Department of Chemistry, University of Okara, Okara 56300, Pakistan

Abstract

Nanographene provides a wide range of possibilities in graphene engineering for future applications due to the higher degrees of configurational freedom with the electronic parameters that may also be continuous or discrete, depending on the intended application. Therefore, the optical and electronic properties of nanographene are of substantial technological interest. Moreover, doping of graphene with heteroatoms (B, P, N, and S, etc.) alters their chemical and electronic characteristics which are suitable for the economical construction of optoelectronic devices. Herein, geometric, electronic, and optical properties of nanographene are evaluated as a function of the nature and position of dopant. Three different nanographene including coronene, hexabenzocoronene (HBC), and dodecabenzocoronene (DBC) are considered for doping (N and B as dopants) in this study with the key focus on DBC-doped systems. For any dopant number, all possible dopant sites are studied except edge position in order to avoid the edge effect. Frontier molecular orbital (FMO) analysis is performed to evaluate the perturbations in electronic characteristics of doped nanographene. A decrease in energy gap is seen for all doped systems. Natural bond orbital (NBO) analysis indicates that doping of boron (B) and nitrogen (N) results in variation in distribution of charges over the nanographene surfaces. The density of states (DOS) analysis reveals that Fermi level ([Formula: see text] is shifted for all B- and N-doped systems. The UV-visible (UV-Vis) absorption spectra are computed to evaluate the changes in the intensity and maximum adsorption wavelength ([Formula: see text] in all doped DBC. Various chemical reactivity descriptors are also evaluated which reveal the degree of stability and chemical reactivity of doped systems. The results indicate that multiple B and N atoms doping offers a new possibility for fine-tuning of electronic and optical properties of nanographene at atomic level, thus providing guidance in development of future advanced optoelectronic devices.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computational Theory and Mathematics,Physical and Theoretical Chemistry,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3