In SilicoStudy of Thiourea Derivatives as Potential Epidermal Growth Factor Receptor Inhibitors

Author:

Roslan Norashikin12,Halim Khairul Bariyyah Abd.32,Bunnori Noraslinda Muhamad32,Aluwi Mohd Fadhlizil Fasihi Mohd4,Kassim Karimah5,Ngah Nurziana16ORCID

Affiliation:

1. Department of Chemistry, Kulliyah of Science, International Islamic University Malaysia, Kuantan Campus, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia

2. Research Unit for Bioinformatics & Computational Biology (RUBIC), Kulliyah of Science, International Islamic University Malaysia, Kuantan Campus, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia

3. Department of Biotechnology, Kulliyah of Science, International Islamic University Malaysia, Kuantan Campus, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia

4. Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, 26300 Gambang, Pahang, Malaysia

5. Institute of Sciences, Universiti Teknologi MARA, Shah Alam, 40450 Shah Alam, Selangor, Malaysia

6. Synthetic and Functional Materials Research Group (SYNTOF), Department of Chemistry, Kulliyyah of Science International Islamic University Malaysia, Kuantan Campus, Bandar Indera Mahkota, 25200 Kuantan Pahang, Malaysia

Abstract

Over the years, the escalation of cancer cases has been linked to the resistance, less selectivity, and toxicity of available anticancer drugs to normal cells. Therefore, continuous efforts are necessary to find new anticancer drugs with high selectivity of epidermal growth factor receptor tyrosine kinase (EGFR-TK) as a therapeutic target. The EGFR-TK protein has a crucial role in cell proliferation and cancer progression. With about 30% of cancer cases involved with the protein, it has piqued the interest as a therapeutic target. The potential of theoretically designed thiourea derivatives as anticancer agents in this report was evaluated against EGFR-TK via in silico techniques, including molecular docking (AutoDock Vina), molecular dynamics simulations (GROMACS), pharmacokinetics, and drug-likeness properties (SwissADME and Molinspiration). New hybrid molecules of the thiourea derivative moiety were designed in this study based on the fragment-based drug discovery and linked with diverse pharmacophoric fragments with reported anticancer potential ([Formula: see text]) and the modification of the methyl position on phenyl ring ([Formula: see text]). These fragments include pyridine, thiophene, furan, pyrrole and styrene groups. Out of 15 compounds, compound 13 displayed the most potent inhibitory activity, with the lowest binding affinity in docking of [Formula: see text]8.7 kcal/mol compared to the positive control erlotinib of [Formula: see text]6.7 kcal/mol. Our molecular dynamics (MD) simulations revealed that molecule 13, comprising styrene and 2-methylphenyl substituents on [Formula: see text] and [Formula: see text], respectively, showed adequate compactness, uniqueness and satisfactory stability. Subsequently, the absorption, distribution, metabolism, excretion and toxicity (ADMET) properties and drug-likeness properties also indicate that this theoretically designed inhibitor ( 13) is less toxic and contains high druggable properties. Thus, compound 13 could be promising against EGFR-TK.

Funder

Universiti Malaysia Pahang

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computational Theory and Mathematics,Physical and Theoretical Chemistry,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3