Efficient Cu Decorated Inorganic B12P12 Nanoclusters for Sensing Toxic COCl2 Gas: A Detailed DFT Study

Author:

Younas Faiza1,Mehboob Muhammad Yasir1,Ayub Khurshid2,Hussain Riaz1,Umar Ali1,Khan Muhammad Usman1,Irshad Zobia3,Adnan Muhammad3ORCID

Affiliation:

1. Department of Chemistry, University of Okara, Okara-56300, Pakistan

2. Department of Chemistry, COMSATS University, Abbottabad Campus, Abbottabad 22060, Pakistan

3. Graduate School, Department of Chemistry, Chosun University, Gwangju 501-759, Republic of Korea

Abstract

Gas sensing materials have been widely explored recently owing to their versatile environmental and agriculture monitoring applications. Phosgene (COCl2) is a toxic and harmful gas, therefore, a reliable and sensitive technique is required for monitoring its quantity in the atmosphere. In this study, pure as well as copper decorated B[Formula: see text]P[Formula: see text](Cu-BP) nanoclusters were analyzed using DFT method to investigate their specific potential for phosgene gas adsorption. Cu interaction resulted in three optimized geometries S1, S2 and S3 with interaction energies of [Formula: see text]234.52[Formula: see text]kJ/mol, [Formula: see text]214.59[Formula: see text]kJ/mol and [Formula: see text]266.45[Formula: see text]kJ/mol, respectively. In all these three cases, the COCl2 prefers to interact at the top of the cage. The phosgene molecule (COCl2) interacts with bare nanocage at a distance of 3.22[Formula: see text]Å with interaction energy of [Formula: see text]6.22[Formula: see text]kJ/mol, while the observed interaction energies of phosgene at Cu decorated B[Formula: see text]P[Formula: see text] are [Formula: see text]76.90[Formula: see text]kJ/mol, [Formula: see text]119.03[Formula: see text]kJ/mol and [Formula: see text]29.60[Formula: see text]kJ/mol, respectively. To observe the variations in electronic structure, fermi level, molecular electrostatic potential (MEP), frontier molecular orbitals (FMOs), natural bonding orbital ([Formula: see text]), softness, hardness, chemical potential and electrophilicity are calculated before and after phosgene adsorption. Energy gap reduce significantly after phosgene adsorption from 2.31[Formula: see text]eV, 2.05[Formula: see text]eV and 2.46[Formula: see text]eV to 1.54[Formula: see text]eV, 1.57[Formula: see text]eV and 2.45[Formula: see text]eV, respectively. Results of all analysis suggested that decoration of Cu significantly enhanced the adsorption power of B[Formula: see text]P[Formula: see text] nan-cluster for COCl2 molecule. Therefore, the Cu-decorated B[Formula: see text]P[Formula: see text] nanocages are considered as potential candidates for application in COCl2 sensors.

Funder

Chosun University

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Physical and Theoretical Chemistry,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3