The Electrostatic Features of Dengue Virus Capsid Assembly

Author:

Lopez-Hernandez Alan E1,Xie Yixin1,Guo Wenhan1,Li Lin12

Affiliation:

1. Computational Science Program, University of Texas at El Paso, El Paso, TX, USA

2. Department of Physics, University of Texas at El Paso, El Paso, TX, USA

Abstract

Dengue virus causes serious diseases and deaths in the world. Understanding the fundamental mechanisms of dengue virus is highly demanded to develop treatments for dengue virus caused diseases. Here, we present a computational work which focused on the stability of dengue viral capsid. The interactions among E proteins on the dengue viral capsid were studied using several computational approaches. It was found that the electrostatic distribution on a single E protein monomer is highly inhomogeneous, which makes an E protein strongly binding with another E protein. This is the reason why all the E proteins form homodimers as the basic units on the whole dengue viral capsids. The pKa calculations of E proteins demonstrated that the folding energy of an E protein is low and stable in the range of pH 6–10, which is different from many other proteins that are stable at certain pH. The pH dependence of binding energy of E protein homodimer shows that the binding energy is low and independent from pH when the pH is also in the range of 6–10. This finding implies that the dengue virus can survive in a wide range of pH, which can explain why the dengue virus is so widely distributed in the world and spreads fast.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3