Blockage of the Monoamine Oxidase by a Natural Compound to Overcome Parkinson’s Disease via Computational Biology

Author:

Sherafatizangeneh Mahsa1,Farshadfar Chiako2,Mojahed Nooshin3,Noorbakhsh Akbar2,Ardalan Noeman4ORCID

Affiliation:

1. Department of Psychology, Faculty of Social Sciences, University of Oslo, Norway

2. Department of Biochemistry, Science and Research Branch, Islamic Azad University Sanandaj, Iran

3. Department of Biology, Faculty of Science, North Branch, Islamic Azad University, Tehran, Iran

4. Department of Microbiology, Science and Research Branch, Islamic Azad University, Tehran, Iran

Abstract

The dopamine (DA) metabolism changes are significant in Parkinson’s disease (PD). Levels of monoamine oxidases (MAOs) play a critical role in DA metabolism and oxidative damage. Increased levels of the MAO-B enzyme in the elderly raise oxidative damage and enhance neurodegenerative processes. Inhibiting MAO-B as an attractive target would be the best method for treating and understanding Parkinson’s disease. This study aimed to recognize a suitable inhibitor for the MAO-B enzyme using computational biology and compared it with Safinamide as a positive control. We used various computational biology techniques such as binding free energy, virtual screening, molecular dynamics (MD), and docking considerations to achieve the goal. To obtain a potent inhibitor, 41,852 compounds were taken from the Zinc database. After preparing compounds and the MAO-B enzyme, screening was performed using AutoDock Vina software. After screening, a potent natural inhibitor (ZINC00261335) was picked, and then, subsequent MD simulations for both ZINC00261335 and Safinamide were conducted via GROMACS software. The stability of the MAO-B_ZINC00261335 complex was excellent during the simulation, and the results of MM-PBSA analysis explicated that ZINC00261335 with ([Formula: see text]118.353[Formula: see text]kJ[Formula: see text]mol[Formula: see text]) is more potent than Safinamide ([Formula: see text]89.305[Formula: see text]kJ[Formula: see text]mol[Formula: see text]). Ultimately, the ADME study (lipophilicity, drug similarity and pharmacokinetic parameters) for ZINC00261335 was revealed, which is acceptable for human use. This study indicates that ZINC00261335 is a suitable MAO-B inhibitor and a great candidate for more laboratory studies.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computational Theory and Mathematics,Physical and Theoretical Chemistry,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3