Impact of Electronic Polarization on Preformed, β-Strand Rich Homogenous and Heterogeneous Amyloid Oligomers

Author:

King Kelsie M.1,Sharp Amanda K.1,Davidson Darcy S.2,Brown Anne M.123,Lemkul Justin A.2

Affiliation:

1. Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, 340 West Campus Dr, Blacksburg, VA 24061, USA

2. Department of Biochemistry, Virginia Tech, 340 West Campus, Dr Blacksburg, VA 24061, USA

3. University Libraries, Virginia Tech, 560 Drillfield, Dr Blacksburg, VA 24061, USA

Abstract

Amyloids are a subset of intrinsically disordered proteins (IDPs) that self-assemble into cross-[Formula: see text] oligomers and fibrils. The structural plasticity of amyloids leads to sampling of metastable, low-molecular-weight oligomers that contribute to cytotoxicity. Of interest are amyloid-[Formula: see text] (A[Formula: see text] and islet amyloid polypeptide (IAPP), which are involved in the pathology of Alzheimer’s disease and Type 2 diabetes mellitus, respectively. In addition to forming homogenous oligomers and fibrils, these species have been found to cross-aggregate in heterogeneous structures. Biophysical properties, including electronic effects, that are unique or conserved between homogenous and heterogeneous amyloids oligomers are thus far unexplored. Here, we simulated homogenous and heterogeneous amyloid oligomers of A[Formula: see text] and IAPP[Formula: see text] fragments using the Drude oscillator model to investigate the impact of electronic polarization on the structural morphology and stability of preformed hexamers. Upon simulation of preformed, [Formula: see text]-strand rich oligomers with Drude, structural rearrangement occurred causing some loss of [Formula: see text]-strand structure in favor of random coil content for all oligomers. Homogenous A[Formula: see text] was the most stable system, deriving stability from low polarization in hydrophobic residues and through salt bridge formation. Changes in polarization were observed primarily for A[Formula: see text] residues in heterogeneous cross-amyloid systems, displaying a decrease in charged residue dipole moments and an increase in hydrophobic sidechain dipole moments. This work is the first study utilizing the Drude-2019 force field with amyloid oligomers, providing insight into the impact of electronic effects on oligomer structure and highlighting the importance of different microenvironments on amyloid oligomer stability.

Funder

National Institutes of Health

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computational Theory and Mathematics,Physical and Theoretical Chemistry,Computer Science Applications

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3