Solvent-Dependent Spectral Properties in Diverse Solvents, Light Harvesting and Antiviral Properties of Mono-Azo Dye (Direct Yellow-27): A Combined Experimental and Theoretical Study

Author:

Bisht Babita1,Imandi Venkataramana2,Pant Sanjay1,Sen Anik3ORCID

Affiliation:

1. Photophysics Laboratory, Department of Physics, Centre of Advance Study, DSB Campus, Kumaun University, Nainital 263002, India

2. Center for Computational Biology and Bioinformatics School of Computational & Integrative Sciences (SCIS), Jawaharlal Nehru University, New Delhi, India

3. Department of Chemistry, GITAM Institute of Science, GITAM (Deemed to be University), Gandhi Nagar, Rushikonda, Visakhapatnam, Andhra Pradesh 530045, India

Abstract

In this paper, we have discussed for the first time a detailed electronic absorption study of the mono-azo dye Direct Yellow 27 [C[Formula: see text]H[Formula: see text]N4Na2O9S3] (DY-27) with five different homogeneous media by applying experimental and theoretical techniques along with some new characteristics of DY-27 in the field of solar cells as well as antiviral activities. A clear absorption band in the UV-visible region was observed, although the absorption maxima lie in the visible region. The electronic absorption transitions observed in our study were fully spin and symmetry allowed transitions with [Formula: see text]–[Formula: see text] character. Time-dependent density functional theory (TD-DFT) analysis has been done for understanding the electronic and the charge transfer performance. Moreover, the impacts of polar protic and polar aprotic solvents in the structural variation of DY-27 have been reported here. Further, applications of the dye in the field of solar cell, as well as antiviral activity, were performed using molecular modeling approaches. The dye exhibited a D–[Formula: see text]–A–A structure with a high light-harvesting efficiency (LHE) and good injection efficiency acts as an effective dye sensitized solar cell (DSSC). Molecular docking studies of the dye DY-27 performed with M-protease of the different corona viruses, MERS, SARS-CoV-1 and SARS-CoV-2 indicated comparable binding energies with the controlled inhibitors and best interactions are observed for the SARS-CoV-1.

Funder

university grants commission

Publisher

World Scientific Pub Co Pte Ltd

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3