Adenine Quadruplexes Show Surprising Stability: Potential Implications for SARS-CoV-2

Author:

Chapman Simon1ORCID,Ghesquière Pierre2,Perry Elliot1,Taylor Peter Geoffrey1,Power Nicholas P.1,Sansom Clare E.3,Xu Yao-Zhong1

Affiliation:

1. School of Life, Health and Chemical Sciences, The Open University, Milton Keynes MK7 6AA, UK

2. School of Physical Sciences, The Open University, Milton Keynes MK7 6AA, UK

3. Department of Biological Sciences, Birkbeck, University of London, UK

Abstract

SARS-CoV-2 is an endemic positive-sense RNA virus naturally transmissible between numerous species with notable infectivity and associated mortality. It is characterized by a poly-adenylated structure capping the genomic terminus. This poly(A) tail is crucial to a cascade of viral replicative activity occurring both extra- and intra-cellular during infection. As a route to proposing potential chemotherapy, this study suggests simple biplanar adenine quadruplexes (A4s) which may fold in specific sequences of the viral genome. To the best of our knowledge, uniquely biplanar A4s have not been previously described in any context. Using molecular modeling techniques and molecular dynamics simulations, some of these non-canonical structures show reasonable stability in a biological context. Notably, mRNA configured as a biplanar A4, shows less dynamic activity than DNA equivalents. This observation may be especially relevant in a physiological context. Furthermore, in contrast to well-characterized guanine quadruplexes, co-ordination with cations appears not to impact on stability. Our molecular dynamics simulations and analyses demonstrate that some A4s are stable in biologically relevant terms. These conclusions may apply to SARS-CoV-2, its variants and other pathogenic RNA viruses.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computational Theory and Mathematics,Physical and Theoretical Chemistry,Computer Science Applications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Metal ion interactions with nucleic acids;Comprehensive Inorganic Chemistry III;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3