High Resolution Backscattering Acoustic Tomography Method Based on Reverse Time Migration for Arbitrary Wideband Sounding Signal

Author:

Sukhanov Dmitry1ORCID,Kuzovova Anzhela1

Affiliation:

1. Faculty of Radiophysics, 36, Lenina Avenue, National Research Tomsk State University, Tomsk 634050, Russia

Abstract

Backscattered wave acoustic tomography using wideband probing signals makes it possible to obtain three-dimensional (3D) images of scattering inhomogeneities. Signal processing based on the reverse time migration (RTM) method allows one to take into account the influence of background refractive obstacles of the medium to minimize distortions of reconstructed tomographic images. We propose a noniterative method of acoustic tomography in an immersion medium based on RTM approach supplemented with linear signal preprocessing to enhance resolution of reconstructing tomography images. The visualization of scattering objects is based on wave inversion from the measurement area considering the probing wave field specially distorted to perform regularized back convolution. The applicability of the proposed method for visualizing scattering objects in water is shown analytically, numerically and experimentally. The proposed method is resistant to noise according to regularization. The results obtained show the agreement between the numerical and analytical solution. Using the example of sounding with linear frequency modulation signals, it is demonstrated that the proposed method allows increasing the resolution of tomographic images in comparison with conventional RTM. The novelty of the proposed method is the preliminary filtration of the forward propagation wave in the course of solving the inverse problem. This approach improves the resolution of tomographic images and allows considering the influence of obstacles.

Funder

RFBR

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Computer Science Applications,Acoustics and Ultrasonics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3