Spectral-Element Simulations of Acoustic Waves Induced by a Moving Underwater Source

Author:

Lloyd S. F.1,Jeong C.1ORCID,Gharti H. N.2,Vignola J.3,Tromp J.24

Affiliation:

1. Department of Civil Engineering, The Catholic University of America, Washington, DC 20064, USA

2. Department of Geosciences, Princeton University, NJ 08544, USA

3. Department of Mechanical Engineering, The Catholic University of America, Washington, DC 20064, USA

4. Program in Applied and Computational Mathematics, Princeton University, NJ 08544, USA

Abstract

In this study, we model acoustic waves induced by moving acoustic sources in three-dimensional (3D) underwater settings based on a spectral-element method (SEM). Numerical experiments are conducted using the SEM software package SPECFEM3D_Cartesian, which facilitates fluid–solid coupling and absorbing boundary conditions. Examples presented in this paper include an unbounded fluid truncated by using absorbing boundaries, and a shallow-water waveguide modeled as a fluid–solid coupled system based on domain decomposition. In the numerical experiments, the SEM-computed pressures match their analytical counterparts. SEM solutions of pressures at points behind and ahead of modeled moving acoustic sources show a frequency shift, i.e., a Doppler effect, which matches the analytical solution. This paper contributes to the field of passive sonar-based detection of moving acoustic sources, and addresses the challenge of computing wave responses generated by side-scan sonar by using moving sources of continuous signals.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Computer Science Applications,Acoustics and Ultrasonics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3