An Adaptive Material Interpolation for the Reconstruction of P-Wave Velocity Models with Sharp Interfaces using the Topology Optimization Method

Author:

Gonçalves Juliano F.1,Silva Emílio C. N.1

Affiliation:

1. Department of Mechatronics and Mechanical Systems Engineering, University of São Paulo, São Paulo, SP 05508-010, Brazil

Abstract

A topology optimization (TO) approach is used to reconstruct P-wave velocity models with sharp interfaces. The concept of material model (interpolation), usually applied in TO to design structures and multi-physics devices, is explored in this work to solve this inverse problem. An adaptive interpolation rule is proposed to deal with the reconstruction problem as a transition from a single- to a multi-material approach combining the Solid Isotropic Material with Penalization (SIMP) and peak function material models. Data collected during the optimization process is used to find material candidates by means of a curve fitting strategy based on generalized simulated annealing (GSA), if this information is not available. The numerical analysis is carried out using a finite element (FE) approach in the frequency domain. Both forward and adjoint problems are solved aided by an open source Domain-Specific Language (DSL) framework and automated derivation tool, while the optimization problem is solved by using a BFGS algorithm. Numerical results for 2D examples demonstrated that proposed material interpolation can lead to solutions with sharper interfaces and improved resolution without including any type of regularization or extra constraint in the optimization problem.

Funder

FAPESP

National Council for Research and Development

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Computer Science Applications,Acoustics and Ultrasonics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3