Affiliation:
1. Chair of Vibroacoustics of Vehicles and Machines, Department of Mechanical Engineering, Technical University of Munich, Garching 85748, Germany
Abstract
In this paper, a coupled finite/infinite element method is applied for computing eigenfrequencies of structures in exterior acoustic domains. The underlying quadratic eigenvalue problem is addressed by a contour integral method based on resolvent moments. The numerical framework is applied to an academic example of a hollow sphere submerged in water. Comparisons of the computed eigenfrequencies to those obtained by boundary element discretizations as well as finite element discretizations in conjunction with perfectly matched layers verify the proposed numerical framework. Furthermore, extensive parameter studies are carried out illustrating the performance of the method with regard to both projection and discretization parameters. Finally, we point out that the proposed method achieves significantly smaller residuals of the computed eigenpairs than the Rayleigh Ritz procedure with second-order Krylov subspaces.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Computer Science Applications,Acoustics and Ultrasonics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献