A Method for Noise Source Levels Inversion with Underwater Ambient Noise Generated by Typhoon in Deep Ocean

Author:

Yang Qiulong12,Yang Kunde12,Duan Shunli12

Affiliation:

1. School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China

2. Key Laboratory of Ocean Acoustics and Sensing, (Northwestern Polytechnical University), Ministry of Industry and Information, Technology, Xi’an 710072, China

Abstract

Sea-surface wind agitation can be considered the dominant noise sources whose intensity relies on local wind speed during typhoon period. Noise source levels in previous researches may be unappreciated for all oceanic regions and should be corrected for modeling typhoon-generated ambient noise fields in deep ocean. This work describes the inversion of wind-driven noise source level based on a noise field model and experimental measurements, and the verification of the inverted noise source levels with experimental results during typhoon period. A method based on ray approach is presented for modeling underwater ambient noise fields generated by typhoons in deep ocean. Besides, acoustic field reciprocity is utilized to decrease the calculation amount in modeling ambient noise field. What is more, the depth dependence and the vertical directionality of noise field based on the modeling method and the Holland typhoon model are evaluated and analyzed in deep ocean. Furthermore, typhoons named “Soulik” in 2013 and “Nida” in 2016 passed by the receivers deployed in the western Pacific (WP) and the South China Sea (SCS). Variations in sound speed profile, bathymetry, and the related oceanic meteorological parameters are analyzed and taken into consideration for modeling noise field. Boundary constraint simulated annealing (SA) method is utilized to invert the three parameters of noise source levels and to minimize the objective function value. The prediction results with the inverted noise source levels exhibit good agreement with the measured experiment data and are compared with predicted results with other noise sources levels derived in previous researches.

Funder

the National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Computer Science Applications,Acoustics and Ultrasonics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3