A Short Survey on Green’s Function for Acoustic Problems

Author:

Okoyenta Augustus R.1,Wu Haijun1,Liu Xueliang1,Jiang Weikang1

Affiliation:

1. State Key Laboratory of Mechanical System and Vibration, Institute of Vibration, Shock and Noise, Shanghai Jiao Tong University, Shanghai 200240, P. R. China

Abstract

Green’s functions for acoustic problems is the fundamental solution to the inhomogeneous Helmholtz equation for a point source, which satisfies specific boundary conditions. It is very significant for the integral equation and also serves as the impulse response of an acoustic wave equation. They are important for acoustic problems that involve the propagation of sound from the source point to the observer position. Once the Green’s function, which satisfies the necessary boundary conditions, is obtained, the sound pressure at any point away from the source can be easily calculated by the integral equation. The major problem faced by researchers is in the process of constructing these Green’s functions which satisfy a specific boundary condition. The aim of this work is to review some of these fundamental solutions available in the literature for different boundary conditions for the ease of analyzing acoustics problems. The review covers the free-space Green’s functions for stationary source and rotational source, for both when the observer and the acoustic medium are at rest and when the medium is in uniform flow. The half-space Green’s functions are also summarized for both stationary acoustic source and moving acoustic source, derived using the image source method, equivalent source method and complex equivalent method in both time domain and frequency domain. Each of these methods used depends on the different impedance boundary conditions for which the Green’s function will satisfy. Finally, enclosed spaced Green’s functions for both rectangular duct and cylindrical duct for an infinite and finite duct is also covered in the review.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Computer Science Applications,Acoustics and Ultrasonics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3