A Computationally Efficient Rayleigh–Ritz Model for Heterogeneous Oceanic Waveguides Using Fourier Series of Sound Speed Profile

Author:

Chowdhury A. D.1ORCID,Bhattacharyya S. K.1,Vendhan C. P.1

Affiliation:

1. Department of Ocean Engineering, Indian Institute of Technology Madras, Chennai, India

Abstract

The normal mode method is widely used in ocean acoustic propagation. Usually, finite difference and finite element methods are used in its solution. Recently, a method has been proposed for heterogeneous layered waveguides where the depth eigenproblem is solved using the classical Rayleigh–Ritz approximation. The method has high accuracy for low to high frequency problems. However, the matrices that appear in the eigenvalue problem for radial wavenumbers require numerical integration of the matrix elements since the sound speed and density profiles are numerically defined. In this paper, a technique is proposed to reduce the computational cost of the Rayleigh–Ritz method by expanding the sound speed profile in a Fourier series using nonlinear least square fit so that the integrals of the matrix elements can be computed in closed form. This technique is tested in a variety of problems and found to be sufficiently accurate in obtaining the radial wavenumbers as well as the transmission loss in a waveguide. The computational savings obtained by this approach is remarkable, the improvements being one or two orders of magnitude.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Computer Science Applications,Acoustics and Ultrasonics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3