LPM EFFECT AS THE ORIGIN OF JET FRAGMENTATION SCALING IN HEAVY ION COLLISIONS

Author:

LOSHAJ FRASHËR1,KHARZEEV DMITRI E.12

Affiliation:

1. Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800, USA

2. Department of Physics, Brookhaven National Laboratory, Upton, New York 11973-5000, USA

Abstract

We address a recent puzzling result from the LHC: the jet fragmentation functions measured in Pb–Pb and pp collisions appear very similar in spite of a large medium-induced energy loss (we will call this jet fragmentation scaling (JFS)). To model the real-time nonperturbative effects in the propagation of a high energy jet through the strongly coupled QCD matter, we adopt an effective dimensionally reduced description in terms of the (1+1) quasi-Abelian–Schwinger theory. This theory is exactly soluble at any value of the coupling and shares with QCD the properties of dynamical generation of "mesons" with a finite mass and the screening of "quark" charge that are crucial for describing the transition of the jet into hadrons. We find that this approach describes quite well the vacuum jet fragmentation in e+e- annihilation at z≥0.2 at jet energies in the range of the LHC heavy ion measurements (z is the ratio of hadron and jet momenta). In QCD medium, we find that the JFS is reproduced if the mean free path λ of the jet is short, λ≤0.3 fm, which is in accord with the small shear viscosity inferred from the measurements of the collective flow. The JFS holds since at short mean free path the quantum interference (analogous to the Landau–Pomeranchuk–Migdal (LPM) effect in QED) causes the produced mesons to have low momenta p~m, where m≃0.6 GeV is the typical meson mass. Meanwhile the induced jet energy loss at short mean free path is much larger than naively expected in string models.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Physics and Astronomy,Nuclear and High Energy Physics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3