Affiliation:
1. Center for the Exploration of Energy and Matter and Department of Physics, Indiana University, Bloomington, IN 47405, USA
Abstract
At very high densities, electrons react with protons to form neutron-rich matter. This material is central to many fundamental questions in nuclear physics and astrophysics. Moreover, neutron-rich matter is being studied with an extraordinary variety of new tools such as Facility for Rare Isotope Beams (FRIB) and the Laser Interferometer Gravitational Wave Observatory (LIGO). We describe the Lead Radius Experiment (PREX) that uses parity violating electron scattering to measure the neutron radius in 208Pb. This has important implications for neutron stars and their crusts. We discuss X-ray observations of neutron star radii. These also have important implications for neutron-rich matter. Gravitational waves (GW) open a new window on neutron-rich matter. They come from sources such as neutron star mergers, rotating neutron star mountains, and collective r-mode oscillations. Using large scale molecular dynamics simulations, we find neutron star crust to be very strong. It can support mountains on rotating neutron stars large enough to generate detectable gravitational waves. Finally, neutrinos from core collapse supernovae (SN) provide another, qualitatively different probe of neutron-rich matter. Neutrinos escape from the surface of last scattering known as the neutrino-sphere. This is a low density warm gas of neutron-rich matter. Neutrino-sphere conditions can be simulated in the laboratory with heavy ion collisions. Observations of neutrinos can probe nucleosyntheses in SN. Simulations of SN depend on the equation of state (EOS) of neutron-rich matter. We discuss a new EOS based on virial and relativistic mean field calculations. We believe that combing astronomical observations using photons, GW, and neutrinos, with laboratory experiments on nuclei, heavy ion collisions, and radioactive beams will fundamentally advance our knowledge of compact objects in the heavens, the dense phases of QCD, the origin of the elements, and of neutron-rich matter.
Publisher
World Scientific Pub Co Pte Lt
Subject
General Physics and Astronomy,Nuclear and High Energy Physics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献