POINT-COUPLING AND NONLINEAR WALECKA MODELS CONNECTION

Author:

LOURENÇO O.1,DUTRA M.1,DELFINO A.1,AMARAL R. L. P. G.1

Affiliation:

1. Departamento de Física, Universidade Federal Fluminense, Av. Litorânea s/n, Boa Viagem, Niterói, RJ 24210-340, Brazil

Abstract

In the context of infinite nuclear matter, the equation of states obtained from the Walecka model turn out to be the same as those constructed from point-coupling models in which the nucleons interact with each other only when they are in contact.1 Nonlinear point-coupling models have been applied sucessfully to describe infinite nuclear matter and finite nuclei spectra properties.2 A theoretical support for this was presented on the basis of naturalness and naive dimensional analysis.3 For the usual linear Walecka model the infinite meson masses limit leads to a point-coupling model. From this, a quite natural question arises, whether the same kind of masses limit taken in a nonlinear Walecka model would provide a point-coupling model. We construct a modified nonlinear Walecka model Lagrangian in which the infinite meson masses limit can be taken exactly and leads to the contact nonlinear model. This modified nonlinear Walecka model includes higher order couplings. Although the modified and the nonlinear Walecka model at a mean field approach lead to distinct equations of state, the physically relevant content of the models are the same.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Physics and Astronomy,Nuclear and High Energy Physics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Density-dependent van der Waals Model under the GW170817 Constraint;The Astrophysical Journal;2019-09-04

2. Consistent relativistic mean-field models: symmetry energy parameter;Journal of Physics: Conference Series;2019-07-01

3. Consistent Skyrme parametrization and its critical parameter values;Journal of Physics: Conference Series;2019-07-01

4. Confinement effects from a PNJL model at zero temperature regime;Journal of Physics: Conference Series;2019-07-01

5. Consistent relativistic mean-field models constrained by GW170817;Physical Review C;2019-04-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3