Chest X-Rays Abnormalities Localization and Classification Using an Ensemble Framework of Deep Convolutional Neural Networks

Author:

Pham Vu-Thu-Nguyet1,Nguyen Quang-Chung1,Nguyen Quang-Vu1

Affiliation:

1. The University of Danang, Vietnam – Korea University of Information and Communication Technology, 470 Tran Dai Nghia Street, Ngu Hanh Son District, Danang 550000, Vietnam

Abstract

Medical X-rays are one of the primary choices for diagnosis because of their potential to disclose previously undetected pathologic changes, non-invasive qualities, radiation dosage, and cost concerns. There are several advantages to creating computer-aided detection (CAD) technologies for X-Ray analysis. With the advancement of technology, researchers have lately used the deep learning approach to obtain high accuracy outcomes in the CAD system. With CAD, computer output may be utilized as a backup option for radiologists, assisting doctors in making the best selections. Chest X-Rays (CXRs) are commonly used to diagnose heart and lung problems. Automatically recognizing these problems with high accuracy might considerably improve real-world diagnosis processes. However, the lack of standard publicly available datasets and benchmark research makes comparing and establishing the best detection algorithms challenging. In order to overcome these difficulties, we have used the VinDr-CXR dataset, which is one of the latest public datasets including 18,000 expert-annotated images labeled into 22 local position-specific abnormalities and 6 globally suspected diseases. To improve the identification of chest abnormalities, we proposed a data preparation procedure and a novel model based on YOLOv5 and ResNet50. YOLOv5 is the most recent YOLO series, and it is more adaptable than previous one-stage detection algorithms. In our paper, the role of YOLOv5 is to locate the abnormality location. On the other side, we employ ResNet for classification, avoiding gradient explosion concerns in deep learning. Then we filter the YOLOv5 and ResNet results. The YOLOv5 detection result is updated if ResNet determines that the image is not anomalous.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Computational Theory and Mathematics,Computer Vision and Pattern Recognition,Information Systems,Computer Science (miscellaneous),Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3