A Robust Network for Multi-Label Abdominal Organs Segmentation

Author:

Le Huu Sy12,Huynh Kha Tu12ORCID

Affiliation:

1. International University, Ho Chi Minh City, Vietnam

2. Vietnam National University, Ho Chi Minh City 700000, Vietnam

Abstract

The paper proposes a robust and efficient model designed for multi-label abdominal organ segmentation, featuring a substantially reduced number of parameters. The model focuses on the effectiveness of edge guidance in segmentation and leverages a 3D-Unet architecture with deep supervision, incorporating the robust deep thinking gate (DTG) architecture. Our DTG-incorporated model architecture excels in both efficiency and effectiveness, demonstrating notable enhancements in multi-label abdominal organ segmentation performance. A comprehensive evaluation of the model employed on two datasets of MRI scan of BTCV and FLARE 2022, comparing its performance against state-of-the-art counterparts. The outcomes revealed that the proposed model achieved the highest dice score in the esophagus (0.795), gallbladder (0.945), and pancreas (0.87) while maintaining a most significantly reduced parameter count (13.3 million parameters count). This achievement underscores the model’s efficiency and its suitability for seamless integration into real-world applications, offering promising prospects for enhanced medical image analysis.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3