Real-Time Facial Expression Recognition: Advances, Challenges, and Future Directions

Author:

Dewi Christine1ORCID,Gunawan Lanyta Setyani1,Hastoko Sastra Gangga1,Christanto Henoch Juli2ORCID

Affiliation:

1. Department of Information Technology, Satya Wacana Christian University Salatiga, Indonesia

2. Department of Infomation System, Atma Jaya Catholic University of Indonesia Jakarta 12930, Indonesia

Abstract

Facial emotion recognition (FER) is the technology or process of identifying and interpreting human emotions based on the analysis of facial expressions. It involves using computer algorithms and machine learning techniques to detect and classify emotional states from images or videos of human faces. Further, FER plays a vital role in recognizing and understanding human emotions to better interpret someone’s feelings, intentions, and attitudes. In the present time, it is widely used in various fields such as healthcare, human–computer interaction, law enforcement, security, and beyond. FER has a wide range of practical applications across various industries including Emotion Monitoring, Adaptive Learning, and Virtual Assistants. This paper presents a comparative analysis of FER algorithms, focusing on deep learning approaches. The performance of different datasets, including FER2013, JAFFE, AffectNet, and Cohn–Kanade, is evaluated using convolutional neural networks (CNNs), deep face, attentional convolutional networks (ACNs), and deep belief networks (DBNs). Among the tested algorithms, DBNs outperformed other algorithms, reaching the highest accuracy of 98.82%. These results emphasize the effectiveness of deep learning techniques, particularly DBNs, in FER. Additionally, outlining the advantages and disadvantages of current research on facial emotion identification might direct future research efforts in the direction of the most profitable directions.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Computational Theory and Mathematics,Computer Vision and Pattern Recognition,Information Systems,Computer Science (miscellaneous),Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3