Recommendation Systems for the Healthcare Domain: A Comprehensive Survey of Evaluation Datasets

Author:

Pham Dinh Tai1ORCID,Seo Yeong-Seok2ORCID,Phan Huyen Trang3ORCID

Affiliation:

1. Faculty of Information Technology, Nguyen Tat Thanh University, Ho Chi Minh 700000, Vietnam

2. Department of Computer Engineering, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, 38541, South Korea

3. Faculty of Information Technology, HCMC University of Technology and Education, Ho Chi Minh 700000, Vietnam

Abstract

Healthcare Recommendation Systems (HRSs) primarily aim to offer advice, recommendations, or suggestions related to human healthcare. Similar to other information systems, datasets affect HRSs’ efficiency. The larger datasets can make the information more diverse and complete. Therefore, the recommendation systems can be more accurate and deliver better performance. In addition, several recent studies have revealed that to enhance the accuracy of systems, there should be a switch from a model-centered method to data-centricity. Therefore, several datasets have been introduced over the past few years to assess the effectiveness of HRSs. However, building new datasets and selecting suitable datasets to evaluate HRSs is an issue. Another problem is that there are presently no articles surveying the datasets that have been published to offer the requirements that a dataset uses to judge the HRSs needs to have. These are the reasons that motivated us to conduct this research. To address these problems, we systematically focus on a comprehensive survey of the datasets used to evaluate HRSs published in recent years. Some of the primary contributions of this study are as follows: (i) Surveying 34 datasets commonly used in methods for building and developing HRSs. (ii) Extracting 10 common characteristics and comparing datasets with those 10 common characteristics. (iii) Providing the 13 requirements regarding a dataset used in HRSs (iv) Comparing surveyed datasets and state-of-the-art HRSs based on 13 constructed requirements (v) Discussing the five main challenges and set out some directions for building new datasets in the future. The results of this research analysis are valuable to many new researchers in choosing or constructing suitable datasets to evaluate how they build their HRSs for the present and future.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3