A Study of Vietnamese Sentiment Classification with Ensemble Pre-trained Language Models

Author:

Thin Dang Van1ORCID,Hao Duong Ngoc1ORCID,Nguyen Ngan Luu-Thuy1ORCID

Affiliation:

1. University of Information Technology, Vietnam National University Ho Chi Minh City, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam

Abstract

Sentiment Analysis (SA) has attracted increasing research attention in recent years. Most existing works tackle the SA task by fine-tuning single pre-trained language models combined with specific layers. Despite their effectiveness, the previous studies overlooked the utilization of feature representations from various contextual language models. Ensemble learning techniques have garnered increasing attention within the field of Natural Language Processing (NLP). However, there is still room for improvement in ensemble models for the SA task, particularly in the aspect-level SA task. Furthermore, the utilization of heterogeneous ensembles, which combine various pre-trained transformer-based language models, may prove beneficial in enhancing overall performance by incorporating diverse linguistic representations. This paper introduces two ensemble models that leverage soft voting and feature fusion techniques by combining individual pre-trained transformer-based language models for the SA task. The latest transformer-based models, including PhoBERT, XLM, XLM-Align, InfoXLM, and viBERT_FPT, are employed to integrate knowledge and representations using feature fusion and a soft voting strategy. We conducted extensive experiments on various Vietnamese benchmark datasets, encompassing sentence-level, document-level, and aspect-level SA. The experimental results demonstrate that our approaches outperform most existing methods, achieving new state-of-the-art results with F1-weighted scores of 94.03%, 95.65%, 75.36%, and 76.23% on the UIT_VSFC, Aivivn, UIT_ABSA for the restaurant domain, and UIT_ViSFD datasets, respectively.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Computational Theory and Mathematics,Computer Vision and Pattern Recognition,Information Systems,Computer Science (miscellaneous),Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3