New Descriptors of Textual Records: Getting Help from Frequent Itemsets

Author:

Bokhabrine Ayoub1,Biskri Ismaïl1,Ghazzali Nadia1

Affiliation:

1. Département de mathématiques et d’informatique, Université du Québec à Trois-Rivières, 3351 boulevard des forges, Trois-Rivières, Québec G8Z 4M3, Canada

Abstract

The analysis of numerical data, whether structured, semi-structured, or raw, is of paramount importance in many sectors of economic, scientific, or simply social activity. The process of extraction of association rules is based on the lexical quality of the text and on the minimum support set by the user. In this paper, we implemented a platform named “IDETEX” capable of extracting itemsets from textual data and using it for the experimentation in different types of clustering methods, such as [Formula: see text]-Medoids and Hierarchical clustering. The experiments conducted demonstrate the potential of the proposed approach for defining similarity between segments.

Publisher

World Scientific Pub Co Pte Lt

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3