Mining Weighted Sequential Patterns Based on Prefix-Tree and Prism Encoding

Author:

Pham Thi-Thiet1,Vu Thuy-Duong2,Nguyen Tai-Du3,Huynh Bao4,Van Trang5

Affiliation:

1. Faculty of Information Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam

2. Department of Computing Fundamental, FPT University, Ho Chi Minh City, Vietnam

3. UNI ASIA Company Limited, Ho Chi Minh City, Vietnam

4. Faculty of Information Technology, HUTECH University, Ho Chi Minh City, Vietnam

5. Faculty of Information Technology, Ho Chi Minh City University of Economics and Finance (UEF), Ho Chi Minh City, Vietnam

Abstract

The purpose of mining sequential patterns problem with weighted constraints is to find high-valued patterns, including infrequent patterns but having items which appear in the pattern of high importance in the sequence database (SD). Therefore, weighted sequential pattern mining will collect a set of more complete patterns with items of low support but of high importance. This paper proposes a new algorithm called WSPM_PreTree to find highly weighted sequential patterns. To collect a set of complete sequential patterns with the stricter weighted constraints of sequential patterns, the proposed algorithm uses both the minimum support constraint and the actual values of items appearing in the SD. To increase the performance of the finding weighted sequential patterns process, the algorithm uses the parent–child relationship on the prefix tree structure to create candidates and combines the weighted mean of the sequential 1-patterns that is calculated from the actual value of items in the SD as conditions to find the weighted sequential patterns. Experimental results show that the proposed algorithm is more efficient than sequential patterns mining with weight constraint (SPMW) algorithm [Ref. 20 ] in the runtime.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Computational Theory and Mathematics,Computer Vision and Pattern Recognition,Information Systems,Computer Science (miscellaneous),Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3