MATHEMATICAL MODELING OF IN-VIVO TUMOR-IMMUNE INTERACTIONS FOR THE CANCER IMMUNOTHERAPY USING MATURED DENDRITIC CELLS

Author:

ARABAMERI ABAZAR1,ASEMANI DAVUD12ORCID,HAJATI JAMSHID3

Affiliation:

1. Laboratory of Signals and Electronic Systems, K.N. Toosi University of Technology, Tehran, Iran

2. Darby Children Research Institute (DCRI), Sixth Floor, Medical University of South Carolina, Charleston, SC 29407, USA

3. Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran

Abstract

To develop an anticancer drug, the mathematical models are nowadays indispensable because of complex immunological mechanisms defying with high experimentation costs as well as a large number of parameters. Based on immunological theories and vision of experimentation data, a simple and sufficient compartment model is designed that can accurately interpret and predict the effects of dendritic cell (DC)-based immunotherapy in accordance with experimentation data. The model includes effector cells, regulatory T cells, helper T cells, and DCs. A new key feature is the inclusion of immunotherapy with DCs matured with different materials. All the parameters of the model have been optimally obtained by fitting the experimental data using genetic algorithm. The proposed model has been used to predict a near-optimal pattern that minimizes tumor size after vaccination. This pattern has been validated by carrying out the associated in-vivo experimentation. The model recommends maturation materials and doses that activate a small amount of Treg in the early days and a large Th1/Treg ratio in the next days. The performance of the model compared with the previous study was shown to be superior, both qualitatively and quantitatively.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Agricultural and Biological Sciences (miscellaneous),Ecology,Applied Mathematics,Agricultural and Biological Sciences (miscellaneous),Ecology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3