Affiliation:
1. Department of Mathematics, Clarke College, 1550 Clarke Drive, Dubuque, IA 52001, USA
Abstract
We present a review and comparison of several recent differential equations models of treatment of HIV-1 infection. We seek to clarify the role of the natural anti-HIV immune response and determine its effect upon optimal treatment schemes. In this paper, we consider systems in which treatment is expressed as a forcing function, as well as those in which we determine optimal treatment via control theoretic techniques. The primary goal of this study is to compare treatment schemes for systems in which a natural nonconstant immune response of the patient is considered explicitly with those that consider implicitly a constant non-specific immune response. We find that when the natural immune response can be boosted sufficiently, drug levels may not need to be as high as previously supposed. This implies that a treatment scenario in which intervals of drug treatment are alternated with some form of immune-boosting therapy may be highly beneficial in terms of reducing toxicity to the patient. Additionally, in developing countries where HIV infection is widespread and sufficient funds are not available to supply rigourous drug regimens, the implications of these models are profound, as they suggest methods of treating HIV at a minimal cost.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Agricultural and Biological Sciences (miscellaneous),Ecology,Applied Mathematics,Agricultural and Biological Sciences (miscellaneous),Ecology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献