ENERGY ANALYSIS OF A NONLINEAR MODEL OF THE NORMAL HUMAN LUNG

Author:

ATHANASIADES A.1,GHORBEL F.1,CLARK J. W.12,NIRANJAN S. C.123,OLANSEN J.1,ZWISCHENBERGER J. B.24,BIDANI A.23

Affiliation:

1. Dynamical Systems Group, School of Engineering, Rice University, Houston, TX 77005, USA

2. Biomedical Engineering Center, University of Texas Medical Branch, Galveston, TX 77555, USA

3. Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA

4. Department of Thoracic Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA

Abstract

Despite the existence of respiratory mechanics models in the literature, rarely one finds analytical expressions that predict the work of breathing (WOB) associated with natural breathing maneuvers in non-ventilated subjects. In the present study, we develop relations that explicitly identify WOB, based on a proposed nonlinear model of respiratory mechanics. The model partitions airways resistance into three components (upper, middle and small), includes a collapsible airways segment, a viscoelastic element describing lung tissue dynamics and a static chest wall compliance. The individual contribution of these respiratory components on WOB is identified and analyzed. For instance, according to model predictions, during the forced vital capacity (FVC) maneuver, most of the work is expended against dissipative forces, mainly during expiration. In addition, expiratory dissipative work during FVC is almost equally partitioned among the upper airways and the collapsible airways resistances. The former expends work at the beginning of expiration, the latter at the end of expiration. The contribution of the peripheral airways is small. Our predictions are validated against laboratory data collected from volunteer subjects and using the esophageal catheter balloon technique.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Agricultural and Biological Sciences (miscellaneous),Ecology,Applied Mathematics,Agricultural and Biological Sciences (miscellaneous),Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3