Affiliation:
1. Austrian Institute for Nonlinear Studies, Parkgasse 9, A-1030 Vienna, Austria
Abstract
A simple model of macroevolution is proposed exhibiting both the property of punctuated equilibrium and the dynamics of potentialities for different species to evolve towards increasingly higher complexity. It is based on the phenomenon of fractal evolution which has been shown to constitute a fundamental property of nonlinear discretized systems with one memory- or random-based feedback loop. The latter involves a basic "cognitive" function of each species given by the power of distinction of states within some predefined resolution. The introduction of a realistic background noise limiting the range of the feedback operation yields a pattern signature in fitness space with a distribution of temporal boost/mutation distances according to a randomized devil's staircase function. Introducing a further level in the hierarchy of the system's rules, the possibility of an adaptive evolutionary change of the resolution itself is implemented, thereby providing a time-dependent measure of the species' cognitive abilities: an additional feedback loop makes use of the inevitable intrinsic fluctuations within the fitness landscape to direct the temporal change of the resolution. Feeding back the small adaptive changes of resolution into the essentially directionless variations of the patterns' lifetimes in fitness space effectively leads to a clear tendency towards increasing evolution potentials for each species ("hierarchically emergent fractal evolution").
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Agricultural and Biological Sciences (miscellaneous),Ecology,Applied Mathematics,Agricultural and Biological Sciences (miscellaneous),Ecology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献