CONTROL OF STATIONARY BEHAVIOR IN PROBABILISTIC BOOLEAN NETWORKS BY MEANS OF STRUCTURAL INTERVENTION

Author:

SHMULEVICH ILYA1,DOUGHERTY EDWARD R.2,ZHANG WEI1

Affiliation:

1. Cancer Genomics Laboratory, The University of Texas, M. D. Anderson Cancer Center, Houston, Texas, USA

2. Department of Electrical Engineering, Texas A&M University, College Station, Texas, USA

Abstract

Probabilistic Boolean Networks (PBNs) were recently introduced as models of gene regulatory networks. The dynamical behavior of PBNs, which are probabilistic generalizations of Boolean networks, can be studied using Markov chain theory. In particular, the steady-state or long-run behavior of PBNs may reflect the phenotype or functional state of the cell. Approaches to alter the steady-state behavior in a specific prescribed manner, in cases of aberrant cellular states, such as tumorigenesis, would be highly beneficial. This paper develops a methodology for altering the steady-state probabilities of certain states or sets of states with minimal modifications to the underlying rule-based structure. This approach is framed as an optimization problem that we propose to solve using genetic algorithms, which are well suited for capturing the underlying structure of PBNs and are able to locate the optimal solution in a highly efficient manner. Several computer simulation experiments support the proposed methodology.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Agricultural and Biological Sciences (miscellaneous),Ecology,Applied Mathematics,Agricultural and Biological Sciences (miscellaneous),Ecology

Cited by 96 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Steady-State Analysis of p53 Protein Pathway Using DTMC and CTMC;Transactions of the Indian National Academy of Engineering;2023-06-17

2. Boolean Factor Graph Modeling and Analysis of Gene Graphs: Budding Yeast Cell-Cycle;2023 57th Annual Conference on Information Sciences and Systems (CISS);2023-03-22

3. A Novel Reverse Engineering Approach for Gene Regulatory Networks;Complex Networks and Their Applications XI;2023

4. Boolean factor graph model for biological systems: the yeast cell-cycle network;BMC Bioinformatics;2021-09-17

5. Graph-Based Bayesian Optimization for Large-Scale Objective-Based Experimental Design;IEEE Transactions on Neural Networks and Learning Systems;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3