Affiliation:
1. Institute of Applied Mathematics, University of Heidelberg, Im Neuenheimer Feld 294, 69120 Heidelberg, Germany
Abstract
The aim of this paper is to show under which conditions a receptor-based model can produce and regulate patterns. Such model is applied to the pattern formation and regulation in a fresh water polyp, hydra. The model is based on the idea that both head and foot formation could be controlled by receptor-ligand binding. Positional value is determined by the density of bound receptors. The model is defined in the form of reaction-diffusion equations coupled with ordinary differential equations. The objective is to check what minimal processes are sufficient to produce patterns in the framework of a diffusion-driven (Turing-type) instability. Three-variable (describing the dynamics of ligands, free and bound receptors) and four-variable models (including also an enzyme cleaving the ligand) are analyzed and compared. The minimal three-variable model takes into consideration the density of free receptors, bound receptors and ligands. In such model patterns can evolve only if self-enhancement of free receptors, i.e., a positive feedback loop between the production of new free receptors and their present density, is assumed. The final pattern strongly depends on initial conditions. In the four-variable model a diffusion-driven instability occurs without the assumption that free receptors stimulate their own synthesis. It is shown that gradient in the density of bound receptors occurs if there is also a second diffusible substance, an enzyme, which degrades ligands. Numerical simulations are done to illustrate the analysis. The four-variable model is able to capture some results from cutting experiments and reflects de novo pattern formation from dissociated cells.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Agricultural and Biological Sciences (miscellaneous),Ecology,Applied Mathematics,Agricultural and Biological Sciences (miscellaneous),Ecology
Reference29 articles.
1. P. M. Bode and H. R. Bode, Pattern Formation: A Primer in Developmental Biology, eds. G. M. Malacinski and S. V. Bryant (MacMillan Publ. Co., New York, 1984) pp. 213–241.
2. Regeneration of Hydra from Reaggregated Cells
3. A theory of biological pattern formation
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献