MODELING ZIKA TRANSMISSION DYNAMICS: PREVENTION AND CONTROL

Author:

ROY PARIMITA1,UPADHYAY RANJIT KUMAR2,CAUR JASMINE1

Affiliation:

1. School of Mathematics, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India

2. Department of Mathematics & Computing, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, Jharkhand, India

Abstract

The Zika virus (ZIKV) epidemic is depicted to have high spatial diversity and slow growth, attributable to the dynamics of the mosquito vector and mobility of the human populations. In an effort to understand the transmission dynamics of Zika virus, we formulate a new compartmental epidemic model with a system of seven differential equations and 11 parameters incorporating the decaying transmission rate and study the impact of protection measure on basic public health. We do not fit the model to the observed pattern of spread, rather we use parameter values estimated in the past and examine the extent to which the designed model prediction agrees with the pattern of spread seen in Brazil, via reaction–diffusion modeling. Our work includes estimation of key epidemiological parameters such as basic reproduction number ([Formula: see text], and gives a rough estimate of how many individuals can be typically infected during an outbreak if it occurs in India. We used partial rank correlation coefficient method for global sensitivity analysis to identify the most influential model parameters. Using optimal control theory and Pontryagin’s maximum principle, a control model has been proposed and conditions for the optimal control are determined for the deterministic model of Zika virus. The control functions for the strategies (i) vector-to-human contact reduction and (ii) vector elimination are introduced into the system. Numerical simulations are also performed. This work aimed at understanding the potential extent and timing of the ZIKV epidemic can be used as a template for the analysis of future mosquito-borne epidemics.

Funder

Science and Engineering Research Board

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Agricultural and Biological Sciences (miscellaneous),Ecology,Applied Mathematics,Agricultural and Biological Sciences (miscellaneous),Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3