MODELING THE CONTROL OF BACTERIAL DISEASE BY SOCIAL MEDIA ADVERTISEMENTS: EFFECTS OF AWARENESS AND SANITATION

Author:

TIWARI PANKAJ KUMAR1,RAI RAJANISH KUMAR2,GUPTA RABINDRA KUMAR3,MARTCHEVA MAIA4,MISRA ARVIND KUMAR3

Affiliation:

1. Department of Basic Science and Humanities, Indian Institute of Information Technology, Bhagalpur 813210, India

2. Department of Mathematics, Jaypee Institute of Information Technology, Noida, Uttar Pradesh 201301, India

3. Department of Mathematics, Institute of Science, Banaras Hindu University, Varanasi 221005, India

4. Department of Mathematics, University of Florida, Gainesville, FL 32611, USA

Abstract

Media impact has significant effect on reducing the disease prevalence, meanwhile sanitation and awareness can control the epidemic by reducing the growth rate of bacteria and direct contacts with infected individuals. In this paper, we investigate the impacts of media and sanitation coverage on the dynamics of epidemic outbreak. We observe that the growth rate of social media advertisements carries out a destabilizing role, while the system regains stability if the baseline number of social media advertisements exceeds a certain threshold. The dissemination of awareness among susceptibles first destabilizes and then stabilizes the system. The disease can be wiped out if the baseline level of awareness or the rate of spreading global information about the disease and its preventive measures is too high. We obtain an explicit expression for the basic reproduction number [Formula: see text] and show that [Formula: see text] leads to the total eradication of infection from the region. To capture a more realistic scenario, we construct the forced delay model by seasonally varying the growth rate of social media advertisements and incorporating the time lag involved in reporting of total infective cases to the policy makers. Seasonal pattern in the growth rate of social media advertisements adds complexity to the system by inducing chaotic oscillations. For gradual increase in the delay in reported cases of infected individuals, the nonautonomous system switches finitely many times between periodic and chaotic states.

Funder

University Grants Commission- Nepal

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Agricultural and Biological Sciences (miscellaneous),Ecology,Applied Mathematics,Agricultural and Biological Sciences (miscellaneous),Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3