Affiliation:
1. Faculty of Computer Studies and Information Technology, University of Garden City, 11111 Khartoum, Sudan
2. School of Computing, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
Abstract
Nowadays, with the advent of the age of Web 2.0, several social recommendation methods that use social network information have been proposed and achieved distinct developments. However, the most critical challenges for the existing majority of these methods are: (1) They tend to utilize only the available social relation between users and deal just with the cold-start user issue. (2) Besides, these methods are suffering from the lack of exploitation of content information such as social tagging, which can provide various sources to extract the item information to overcome the cold-start item and improve the recommendation quality. In this paper, we investigated the efficiency of data fusion by integrating multi-source of information. First, two essential factors, user-side information, and item-side information, are identified. Second, we developed a novel social recommendation model called Two-Sided Regularization (TSR), which is based on the probabilistic matrix factorization method. Finally, the effective quantum-based similarity method is adapted to measure the similarity between users and between items into the proposed model. Experimental results on the real dataset show that our proposed model TSR addresses both of cold-start user and item issues and outperforms state-of-the-art recommendation methods. These results indicate the importance of incorporating various sources of information in the recommendation process.
Publisher
World Scientific Pub Co Pte Lt
Subject
Computer Science Applications,Modeling and Simulation
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献