An identification method for power grid error parameters based on sensitivity analysis and deep residual network

Author:

Wang Jingjing1,Ye Mingdong2,Xie Dawei1,Wu Xu1,Ding Chao1,Peng Wei1,Han Wenzhi3

Affiliation:

1. State Grid Anhui Electric Power Company Ltd., Hefei 230061, P. R. China

2. School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 230009, P. R. China

3. Anhui Nanrui Jiyuan Electric Power System Tech. Co. Ltd., Hefei 230088, P. R. China

Abstract

The planning, scheduling and operation decisions of the power grid depend on the calculation of the simulation model. Parameter errors in the grid model can lead to deviations between simulation calculations and actual grid operation. The strategy based on incorrect calculation data will lead to power outages in the actual power grid, which may cause significant economic losses and personal safety accidents. For the safe operation of power grid, a method for locating the wrong parameters of transmission line based on sensitivity analysis (SA) and deep residual network (DRN) is proposed. By calculating the sensitivity of apparent power to parameter error of each line in the power grid, the propagation characteristics of power flow error are analyzed quantitatively. An error region segmentation method is proposed to reduce the search range of error parameters from large-scale power grids to local networks which can reduce the computational complexity of the search algorithm, and increase accuracy. An error transmission line index for local power grids is proposed to identify error source in local power grids. Then, the specific wrong parameters are identified through the DRN. It can intelligently identify the error parameters from multiple parameters of the error transmission line. The calculation results of the 300-bus system verify the correctness and effectiveness of the proposed method.

Funder

Science and Technology Project of State Grid Anhui Electric Power Co. LTD

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Science Applications,Modeling and Simulation,General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Guest Editorial: Modeling and simulation based intelligent embedded computing systems in industrial internet of things;International Journal of Modeling, Simulation, and Scientific Computing;2024-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3