Malicious encrypted network traffic flow detection using enhanced optimal deep feature selection with DLSTM

Author:

Hublikar Shivaraj1,Shet N. Shekar V.1

Affiliation:

1. Department of Electronics and Communication, National Institute of Technology Karnataka, Surathkal, Mangalore 575025, Karnataka, India

Abstract

This paper plans to implement a novel detection model of maliciously encrypted internet protocol network flow using the deep structured concept. The major processing levels are (i) data collection, (ii) feature extraction, (iii) optimal feature selection, and (iv) detection. In the beginning, the standard dataset is taken from online databases. The deep convolutional neural network (DCNN) is introduced for the deep feature extraction process. The accurate features are chosen by the crossover decision-based krill herd algorithm (CD-KHA) which helps to minimize the training complexity of the deep structured architecture. These selected features are given to the hybridized deep learning with long short-term memory (LSTM) and deep neural network (DNN). Here, the structural design of the model is improved by the same CD-KHA. Through the comparison and analysis, the accuracy rate of the offered method shows higher performance than the other baseline approaches.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Science Applications,Modeling and Simulation,General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis of Machine Learning Application in Campus Network Traffic Anomaly Detection;Applied Mathematics and Nonlinear Sciences;2024-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3