Simulation-oriented model reuse in cyber-physical systems: A method based on constrained directed graph

Author:

Liu Wenzheng1,Zhang Heming1,Tang Chao2,Wu Shuangfei3,Zhu Hongguang4

Affiliation:

1. National CIMS Engineering Research Center, Tsinghua University, Beijing 100084, P. R. China

2. Gridsum Holding, Inc., Beijing 100086, P. R. China

3. Center of Intelligent Control and Telescience, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, P. R. China

4. Institute of Computing Technology, China Academy of Railway Sciences Corporation Limited, Beijing 100084, P. R. China

Abstract

Modeling and Simulation of Cyber-Physical Systems (MSCPS) is demanding in terms of immediate response to dynamic and complex changes of CPS. Simulation-oriented model reuse can be used to build a whole CPS model by reusing developed models in a new simulation application, which avoid repeated modeling and thus reduce the redevelopment of submodels. Model composition, one of the important methods, enables model reuse by selecting and adopting diversified integration solutions of simulation components to meet the requirements of simulation application systems. In this paper, a real-time model integration approach for global CPS modeling is proposed, which reuses developed submodels by compositing submodel nodes. Specifically, a constrained directed graph of submodels for the whole system which can meet the simulation requirements is constructed by reverse matching. Submodel properties, including co-simulation distance between submodel nodes, reuse benefit and simulation performance of model nodes, are quantified. Based on the properties, the model-integrated solution for the whole CPS simulation is retrieved throughout the model constrained digraph by the Genetic Algorithm (GA). In the experiment, the proposed method is applied to a typical model integrated computing scenario containing multiple model-integration solutions, among which the Pareto optimal solutions are retrieved. Results show that the effectiveness of the model integration method proposed in this paper is verified.

Funder

key technologies research and development program

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Science Applications,Modeling and Simulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3