Numerical estimates for the regularization of nonautonomous ill-posed problems

Author:

Fury Matthew A.1

Affiliation:

1. Division of Science & Engineering, Penn State Abington, 1600 Woodland Road, Abington, PA 19001, USA

Abstract

The regularization of ill-posed problems has become a useful tool in studying initial value problems that do not adhere to certain desired properties such as continuous dependence of solutions on initial data. Because direct computation of the solution becomes difficult in this situation, many authors have alternatively approximated the solution by the solution of a closely defined well posed problem. In this paper, we demonstrate this process of regularization for nonautonomous ill-posed problems including the backward heat equation with a time-dependent diffusion coefficient. In the process, we provide two different approximate well posed models and numerically compare convergence rates of their solutions to a known solution of the original ill-posed problem.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Modeling and Simulation

Reference22 articles.

1. Applications to Partial Differential Equations;Lattes R.,1969

2. Abstract Cauchy Problems

3. Structural Stability for Ill-Posed Problems in Banach Space

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3