QoS-aware simulation job scheduling algorithm in virtualized cloud environment

Author:

Li Zhen1,Chen Bin2ORCID,Liu Xiaocheng2,Ning Dandan2,Qiu Xiaogang2

Affiliation:

1. College of Information and Communication, National University of Defense Technology, Jiefang Park Road, Wuhan 430019, P.R. China

2. College of System Engineering, National University of Defense Technology, Deya Road, Changsha 410073, P. R. China

Abstract

Cloud computing is attracting an increasing number of simulation applications running in the virtualized cloud data center. These applications are submitted to the cloud in the form of simulation jobs. Meanwhile, the management and scheduling of simulation jobs are playing an essential role to offer efficient and high productivity computational service. In this paper, we design a management and scheduling service framework for simulation jobs in two-tier virtualization-based private cloud data center, named simulation execution as a service (SimEaaS). It aims at releasing users from complex simulation running settings, while guaranteeing the QoS requirements adaptively. Furthermore, a novel job scheduling algorithm named adaptive deadline-aware job size adjustment (ADaSA) algorithm is designed to realize high job responsiveness under QoS requirement for SimEaaS. ADaSA tries to make full use of the idle fragmentation resources by tuning the number of requested processes of submitted jobs in the queue adaptively, while guaranteeing that jobs’ deadline requirements are not violated. Extensive experiments with trace-driven simulation are conducted to evaluate the performance of our ADaSA. The results show that ADaSA outperforms both cloud-based job scheduling algorithm KCEASY and traditional EASY in terms of response time (up to 90%) and bounded slow down (up to 95%), while obtains approximately equivalent deadline-missed rate. ADaSA also outperforms two representative moldable scheduling algorithms in terms of deadline-missed rate (up to 60%).

Funder

National Key Research & Development (R&D) Plan

National Natural of Science Foundation of China

National Natural Science Foundation of China

National Social Science Foundation of China

Guangdong Key Laboratory for Big Data Analysis and Simulation of Public Opinion

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Modelling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3