PedFed: A performance evaluation-driven federated learning framework for efficient communication

Author:

Niu Ke1ORCID,Tai Wenjuan1ORCID,Peng Xueping2ORCID,Guo Zhongmin1ORCID,Zhang Can1ORCID,Li Heng3ORCID

Affiliation:

1. Computer School, Beijing Information Science and Technology University, Beijing, P. R. China

2. Faculty of Engineering and Information Technology, Australian Artificial Intelligence Institute, University of Technology Sydney, Australia

3. Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology, Shenzhen, P. R. China

Abstract

Protecting healthcare data privacy and security is crucial in advanced manufacturing, which involves medical devices. It encompasses patient records and clinical trial data. Federated learning emerges as a solution that enables model training across different institutions without compromising data privacy and security. However, existing frameworks often exhibit a bias towards clients with larger data volumes, neglecting the connection between global and local model performance. This can result in suboptimal aggregation of the global model, thereby affecting the effectiveness and efficiency of the overall process. To address these limitations, we propose a performance evaluation-driven federated learning framework (PedFed). The primary objective of PedFed is to enhance global model aggregation and improve communication efficiency. Our approach involves a client selection strategy based on performance evaluation of local and global models. Specifically, we introduce the concept of local model improvement (LMI) using Intersection over Union (IoU) for client selection in medical image segmentation scenarios. Moreover, we introduce a dynamic aggregation framework incorporating validation IoU as a weighting factor to mitigate model divergence caused by not independent and identically distributed (non-IID) data. We focus on performing image segmentation tasks to simulate the analysis of sensitive data in the healthcare domain. Experimental results conducted on brain tumor and heart segmentation datasets demonstrate the superiority of the PedFed framework over the baseline framework, confirming its benefits in communication efficiency.

Funder

Promoting the Classification and Development of Colleges - Student Innovation and Entrepreneurship Training Program

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3