Ulam–Hyers stability and analytical approach for m-dimensional Caputo space-time variable fractional order advection–dispersion equation

Author:

Verma Pratibha1,Kumar Manoj1,Shukla Anand2

Affiliation:

1. Department of Mathematics, Motilal Nehru National Institute of Technology Allahabad, Prayagraj–211004, Uttar Pradesh, India

2. Department of Mathematics, Wollega University, Nekemte, Ethiopia

Abstract

This article introduces the computational analytical approach to solve the m-dimensional space-time variable Caputo fractional order advection–dispersion equation with the Dirichlet boundary using the two-step Adomian decomposition method and obtain the exact solution in just one iteration. Moreover, with the help of fixed point theory, we study the existence and uniqueness conditions for the positive solution and prove some new results. Also, obtain the Ulam–Hyers stabilities for the proposed problem. Two generalized examples are considered to show the method’s applicability and compared with other existing numerical methods. The present method performs exceptionally well in terms of efficiency and simplicity. Further, we solved both examples using the two most well-known numerical methods and compared them with the TSADM solution.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Modelling and Simulation

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Existence, Uniqueness and Stability of Solutions of a Variable-Order Nonlinear Integro-differential Equation in a Banach Space;Proceedings of the National Academy of Sciences, India Section A: Physical Sciences;2023-09-26

2. A Robust Iterative Approach for Space-Time Fractional Multidimensional Telegraph Equation;International Journal of Applied and Computational Mathematics;2023-09-09

3. Infinitely many positive solutions and Ulam–Hyers stability of fractional order two-point boundary value problems;The Journal of Analysis;2023-01-31

4. Theoretical and Numerical Analysis of Fractional Order Mathematical Model on Recent COVID-19 Model Using Singular Kernel;Proceedings of the National Academy of Sciences, India Section A: Physical Sciences;2023-01-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3