SCHEDULING WITH JOB CHECKPOINT IN COMPUTATIONAL GRID ENVIRONMENT

Author:

NANDAGOPAL MALARVIZHI1,GAJALAKSHMI S.2,UTHARIARAJ V. RHYMEND1

Affiliation:

1. Ramanujan Computing Centre, Anna University, Chennai, India

2. Anna University, Chennai, India

Abstract

Computational grids have the potential for solving large-scale scientific applications using heterogeneous and geographically distributed resources. In addition to the challenges of managing and scheduling these applications, reliability challenges arise because of the unreliable nature of grid infrastructure. Two major problems that are critical to the effective utilization of computational resources are efficient scheduling of jobs and providing fault tolerance in a reliable manner. This paper addresses these problems by combining the checkpoint replication based fault tolerance mechanism with minimum total time to release (MTTR) job scheduling algorithm. TTR includes the service time of the job, waiting time in the queue, transfer of input and output data to and from the resource. The MTTR algorithm minimizes the response time by selecting a computational resource based on job requirements, job characteristics, and hardware features of the resources. The fault tolerance mechanism used here sets the job checkpoints based on the resource failure rate. If resource failure occurs, the job is restarted from its last successful state using a checkpoint file from another grid resource. Globus ToolKit is used as the grid middleware to set up a grid environment and evaluate the performance of the proposed approach. The monitoring tools Ganglia and Network Weather Service are used to gather hardware and network details, respectively. The experimental results demonstrate that, the proposed approach effectively schedule the grid jobs with fault-tolerant way thereby reduces TTR of the jobs submitted in the grid. Also, it increases the percentage of jobs completed within specified deadline and making the grid trustworthy.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3