Efficient parallelization of SPH algorithm on modern multi-core CPUs and massively parallel GPUs

Author:

Jagtap Pravin1,Nasre Rupesh2,Sanapala V. S.3,Patnaik B. S. V.1ORCID

Affiliation:

1. Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036, India

2. Department of Computer Science & Engineering, Indian Institute of Technology Madras, Chennai 600036, India

3. Indira Gandhi Centre for Atomic Research, Homi Bhabha National Institute, Kalpakkam 603 102, India

Abstract

Smoothed Particle Hydrodynamics (SPH) is fast emerging as a practically useful computational simulation tool for a wide variety of engineering problems. SPH is also gaining popularity as the back bone for fast and realistic animations in graphics and video games. The Lagrangian and mesh-free nature of the method facilitates fast and accurate simulation of material deformation, interface capture, etc. Typically, particle-based methods would necessitate particle search and locate algorithms to be implemented efficiently, as continuous creation of neighbor particle lists is a computationally expensive step. Hence, it is advantageous to implement SPH, on modern multi-core platforms with the help of High-Performance Computing (HPC) tools. In this work, the computational performance of an SPH algorithm is assessed on multi-core Central Processing Unit (CPU) as well as massively parallel General Purpose Graphical Processing Units (GP-GPU). Parallelizing SPH faces several challenges such as, scalability of the neighbor search process, force calculations, minimizing thread divergence, achieving coalesced memory access patterns, balancing workload, ensuring optimum use of computational resources, etc. While addressing some of these challenges, detailed analysis of performance metrics such as speedup, global load efficiency, global store efficiency, warp execution efficiency, occupancy, etc. is evaluated. The OpenMP and Compute Unified Device Architecture[Formula: see text] parallel programming models have been used for parallel computing on Intel Xeon[Formula: see text] E5-[Formula: see text] multi-core CPU and NVIDIA Quadro M[Formula: see text] and NVIDIA Tesla p[Formula: see text] massively parallel GPU architectures. Standard benchmark problems from the Computational Fluid Dynamics (CFD) literature are chosen for the validation. The key concern of how to identify a suitable architecture for mesh-less methods which essentially require heavy workload of neighbor search and evaluation of local force fields from neighbor interactions is addressed.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Science Applications,Modelling and Simulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3